Application of the difference Gaussian rules to solution of hyperbolic problems
نویسندگان
چکیده
Two of the authors earlier suggested a method of calculating special grid steps for three point finite-difference schemes which yielded exponential superconvergence of the Neumann-to-Dirichlet map. We apply this approach to solve the two-dimensional timedomain wave problem and the 2.5-D elasticity system in cylindrical coordinates. Our numerical experiments exhibit exponential convergence at prescribed points, with the cost per grid node close to that of the standard second order finite-difference scheme. The scheme demonstrates high accuracy with slightly more than two grid points per wavelength. The reduction of the grid size by one order compared to the standard scheme with the equidistant grids is observed.
منابع مشابه
NUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کاملEfficient quadrature rules for a class of cordial Volterra integral equations: A comparative study
A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations. The equations of this class appear in heat conduction problems with mixed boundary conditions. The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes. A comparative stud...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملFUZZY GOAL PROGRAMMING TECHNIQUE TO SOLVE MULTIOBJECTIVE TRANSPORTATION PROBLEMS WITH SOME NON-LINEAR MEMBERSHIP FUNCTIONS
The linear multiobjective transportation problem is a special type of vector minimum problem in which constraints are all equality type and the objectives are conicting in nature. This paper presents an application of fuzzy goal programming to the linear multiobjective transportation problem. In this paper, we use a special type of nonlinear (hyperbolic and exponential) membership functions to ...
متن کاملInvestigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کامل